DinnerRecv: working esp-idf version with ack

This commit is contained in:
2025-09-15 16:26:41 -07:00
parent 0b4b9f512d
commit a18a0a30b0
7 changed files with 287 additions and 162 deletions

1
.gitignore vendored Normal file
View File

@ -0,0 +1 @@
/DinnerRecv/build/

View File

@ -1,42 +0,0 @@
# CLAUDE.md
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
## Project Overview
DinnerRecv is an Arduino project for a FireBeetle 2 ESP32-E microcontroller that controls a WS2812B LED strip. The project creates a sequential white light animation across 8 LEDs.
## Hardware Configuration
- **Microcontroller**: FireBeetle 2 ESP32-E
- **LED Strip**: WS2812B (8 pixels)
- **Data Pin**: GPIO 16
- **Power**: 5V from bottom of the board (under USB connector)
- **Resistor**: 470 Ohm between data line and LED strip
## Development Environment
This is an Arduino sketch (.ino file) that should be developed using:
- Arduino IDE
- PlatformIO
- Or other Arduino-compatible development environment
## Key Dependencies
- `Adafruit_NeoPixel` library for WS2812B LED control
## Code Architecture
The code follows standard Arduino structure:
- `setup()`: Initializes serial communication (115200 baud) and LED strip
- `loop()`: Continuously runs the LED animation sequence
## Hardware Reference
Implementation follows the tutorial at: https://esp32io.com/tutorials/esp32-ws2812b-led-strip
## Configuration Constants
- `PIN 16`: Data pin for LED strip
- `NUMPIXELS 8`: Number of LEDs in the strip
- `DELAYVAL 50`: Delay in milliseconds between LED updates

View File

@ -1,121 +1,143 @@
#include "esp_check.h" /*
#include "led_strip_encoder.h" * SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
static const char *TAG = "led_strip_encoder"; #include "led_strip_encoder.h"
#include "esp_check.h"
static const char *TAG = "led_encoder";
typedef struct { typedef struct {
rmt_encoder_t base; rmt_encoder_t base;
rmt_encoder_t *bytes_encoder; rmt_encoder_t *bytes_encoder;
rmt_encoder_t *copy_encoder; rmt_encoder_t *copy_encoder;
int state; int state;
rmt_symbol_word_t reset_code; rmt_symbol_word_t reset_code;
} rmt_led_strip_encoder_t; } rmt_led_strip_encoder_t;
static size_t rmt_encode_led_strip(rmt_encoder_t *encoder, rmt_channel_handle_t channel, const void *primary_data, size_t data_size, rmt_encode_state_t *ret_state) RMT_ENCODER_FUNC_ATTR
{ static size_t rmt_encode_led_strip(rmt_encoder_t *encoder,
rmt_led_strip_encoder_t *led_encoder = __containerof(encoder, rmt_led_strip_encoder_t, base); rmt_channel_handle_t channel,
rmt_encoder_handle_t bytes_encoder = led_encoder->bytes_encoder; const void *primary_data, size_t data_size,
rmt_encoder_handle_t copy_encoder = led_encoder->copy_encoder; rmt_encode_state_t *ret_state) {
rmt_encode_state_t session_state = 0; rmt_led_strip_encoder_t *led_encoder =
rmt_encode_state_t state = 0; __containerof(encoder, rmt_led_strip_encoder_t, base);
size_t encoded_symbols = 0; rmt_encoder_handle_t bytes_encoder = led_encoder->bytes_encoder;
rmt_encoder_handle_t copy_encoder = led_encoder->copy_encoder;
switch (led_encoder->state) { rmt_encode_state_t session_state = RMT_ENCODING_RESET;
case 0: // send RGB data rmt_encode_state_t state = RMT_ENCODING_RESET;
encoded_symbols += bytes_encoder->encode(bytes_encoder, channel, primary_data, data_size, &session_state); size_t encoded_symbols = 0;
if (session_state & RMT_ENCODING_COMPLETE) { switch (led_encoder->state) {
led_encoder->state = 1; // switch to next state when current encoding session finished case 0: // send RGB data
} encoded_symbols += bytes_encoder->encode(
if (session_state & RMT_ENCODING_MEM_FULL) { bytes_encoder, channel, primary_data, data_size, &session_state);
state |= RMT_ENCODING_MEM_FULL; if (session_state & RMT_ENCODING_COMPLETE) {
goto out; // yield if there's no free space for encoding artifacts led_encoder->state =
} 1; // switch to next state when current encoding session finished
// fall-through
case 1: // send reset code
encoded_symbols += copy_encoder->encode(copy_encoder, channel, &led_encoder->reset_code,
sizeof(led_encoder->reset_code), &session_state);
if (session_state & RMT_ENCODING_COMPLETE) {
led_encoder->state = 0; // back to the initial encoding session
state |= RMT_ENCODING_COMPLETE;
}
if (session_state & RMT_ENCODING_MEM_FULL) {
state |= RMT_ENCODING_MEM_FULL;
goto out; // yield if there's no free space for encoding artifacts
}
} }
if (session_state & RMT_ENCODING_MEM_FULL) {
state |= RMT_ENCODING_MEM_FULL;
goto out; // yield if there's no free space for encoding artifacts
}
// fall-through
case 1: // send reset code
encoded_symbols +=
copy_encoder->encode(copy_encoder, channel, &led_encoder->reset_code,
sizeof(led_encoder->reset_code), &session_state);
if (session_state & RMT_ENCODING_COMPLETE) {
led_encoder->state =
RMT_ENCODING_RESET; // back to the initial encoding session
state |= RMT_ENCODING_COMPLETE;
}
if (session_state & RMT_ENCODING_MEM_FULL) {
state |= RMT_ENCODING_MEM_FULL;
goto out; // yield if there's no free space for encoding artifacts
}
}
out: out:
*ret_state = state; *ret_state = state;
return encoded_symbols; return encoded_symbols;
} }
static esp_err_t rmt_del_led_strip_encoder(rmt_encoder_t *encoder) static esp_err_t rmt_del_led_strip_encoder(rmt_encoder_t *encoder) {
{ rmt_led_strip_encoder_t *led_encoder =
rmt_led_strip_encoder_t *led_encoder = __containerof(encoder, rmt_led_strip_encoder_t, base); __containerof(encoder, rmt_led_strip_encoder_t, base);
rmt_del_encoder(led_encoder->copy_encoder); rmt_del_encoder(led_encoder->bytes_encoder);
rmt_del_encoder(led_encoder->bytes_encoder); rmt_del_encoder(led_encoder->copy_encoder);
free(led_encoder); free(led_encoder);
return ESP_OK; return ESP_OK;
} }
static esp_err_t rmt_led_strip_encoder_reset(rmt_encoder_t *encoder) RMT_ENCODER_FUNC_ATTR
{ static esp_err_t rmt_led_strip_encoder_reset(rmt_encoder_t *encoder) {
rmt_led_strip_encoder_t *led_encoder = __containerof(encoder, rmt_led_strip_encoder_t, base); rmt_led_strip_encoder_t *led_encoder =
rmt_encoder_reset(led_encoder->bytes_encoder); __containerof(encoder, rmt_led_strip_encoder_t, base);
rmt_encoder_reset(led_encoder->copy_encoder); rmt_encoder_reset(led_encoder->bytes_encoder);
led_encoder->state = 0; rmt_encoder_reset(led_encoder->copy_encoder);
return ESP_OK; led_encoder->state = RMT_ENCODING_RESET;
return ESP_OK;
} }
esp_err_t rmt_new_led_strip_encoder(const led_strip_encoder_config_t *config, rmt_encoder_handle_t *ret_encoder) esp_err_t rmt_new_led_strip_encoder(const led_strip_encoder_config_t *config,
{ rmt_encoder_handle_t *ret_encoder) {
esp_err_t ret = ESP_OK; esp_err_t ret = ESP_OK;
rmt_led_strip_encoder_t *led_encoder = NULL; rmt_led_strip_encoder_t *led_encoder = NULL;
ESP_GOTO_ON_FALSE(config && ret_encoder, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument"); ESP_GOTO_ON_FALSE(config && ret_encoder, ESP_ERR_INVALID_ARG, err, TAG,
led_encoder = calloc(1, sizeof(rmt_led_strip_encoder_t)); "invalid argument");
ESP_GOTO_ON_FALSE(led_encoder, ESP_ERR_NO_MEM, err, TAG, "no mem for led strip encoder"); led_encoder = rmt_alloc_encoder_mem(sizeof(rmt_led_strip_encoder_t));
led_encoder->base.encode = rmt_encode_led_strip; ESP_GOTO_ON_FALSE(led_encoder, ESP_ERR_NO_MEM, err, TAG,
led_encoder->base.del = rmt_del_led_strip_encoder; "no mem for led strip encoder");
led_encoder->base.reset = rmt_led_strip_encoder_reset; led_encoder->base.encode = rmt_encode_led_strip;
led_encoder->base.del = rmt_del_led_strip_encoder;
// different led strip might have its own timing requirements, following parameter is for WS2812 led_encoder->base.reset = rmt_led_strip_encoder_reset;
rmt_bytes_encoder_config_t bytes_encoder_config = { // different led strip might have its own timing requirements, following
.bit0 = { // parameter is for WS2812
.level0 = 1, rmt_bytes_encoder_config_t bytes_encoder_config = {
.duration0 = 0.3 * config->resolution / 1000000, // T0H=0.3us .bit0 =
.level1 = 0, {
.duration1 = 0.9 * config->resolution / 1000000, // T0L=0.9us .level0 = 1,
}, .duration0 = 0.3 * config->resolution / 1000000, // T0H=0.3us
.bit1 = { .level1 = 0,
.level0 = 1, .duration1 = 0.9 * config->resolution / 1000000, // T0L=0.9us
.duration0 = 0.9 * config->resolution / 1000000, // T1H=0.9us },
.level1 = 0, .bit1 =
.duration1 = 0.3 * config->resolution / 1000000, // T1L=0.3us {
}, .level0 = 1,
.flags.msb_first = 1 // WS2812 transfer bit order: G7...G0R7...R0B7...B0 .duration0 = 0.9 * config->resolution / 1000000, // T1H=0.9us
}; .level1 = 0,
ESP_GOTO_ON_ERROR(rmt_new_bytes_encoder(&bytes_encoder_config, &led_encoder->bytes_encoder), err, TAG, "create bytes encoder failed"); .duration1 = 0.3 * config->resolution / 1000000, // T1L=0.3us
},
rmt_copy_encoder_config_t copy_encoder_config = {}; .flags.msb_first = 1 // WS2812 transfer bit order: G7...G0R7...R0B7...B0
ESP_GOTO_ON_ERROR(rmt_new_copy_encoder(&copy_encoder_config, &led_encoder->copy_encoder), err, TAG, "create copy encoder failed"); };
ESP_GOTO_ON_ERROR(
uint32_t reset_ticks = config->resolution / 1000000 * 50 / 2; // reset code duration defaults to 50us rmt_new_bytes_encoder(&bytes_encoder_config, &led_encoder->bytes_encoder),
led_encoder->reset_code = (rmt_symbol_word_t) { err, TAG, "create bytes encoder failed");
.level0 = 0, rmt_copy_encoder_config_t copy_encoder_config = {};
.duration0 = reset_ticks, ESP_GOTO_ON_ERROR(
.level1 = 0, rmt_new_copy_encoder(&copy_encoder_config, &led_encoder->copy_encoder),
.duration1 = reset_ticks, err, TAG, "create copy encoder failed");
};
*ret_encoder = &led_encoder->base; uint32_t reset_ticks = config->resolution / 1000000 * 50 /
return ESP_OK; 2; // reset code duration defaults to 50us
led_encoder->reset_code = (rmt_symbol_word_t){
.level0 = 0,
.duration0 = reset_ticks,
.level1 = 0,
.duration1 = reset_ticks,
};
*ret_encoder = &led_encoder->base;
return ESP_OK;
err: err:
if (led_encoder) { if (led_encoder) {
if (led_encoder->bytes_encoder) { if (led_encoder->bytes_encoder) {
rmt_del_encoder(led_encoder->bytes_encoder); rmt_del_encoder(led_encoder->bytes_encoder);
}
if (led_encoder->copy_encoder) {
rmt_del_encoder(led_encoder->copy_encoder);
}
free(led_encoder);
} }
return ret; if (led_encoder->copy_encoder) {
} rmt_del_encoder(led_encoder->copy_encoder);
}
free(led_encoder);
}
return ret;
}

View File

@ -1,6 +1,12 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once #pragma once
#include "driver/rmt_encoder.h" #include "driver/rmt_encoder.h"
#include <stdint.h>
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
@ -20,7 +26,7 @@ typedef struct {
* @param[out] ret_encoder Returned encoder handle * @param[out] ret_encoder Returned encoder handle
* @return * @return
* - ESP_ERR_INVALID_ARG for any invalid arguments * - ESP_ERR_INVALID_ARG for any invalid arguments
* - ESP_ERR_NO_MEM out of memory when creating encoder * - ESP_ERR_NO_MEM out of memory when creating led strip encoder
* - ESP_OK if creating encoder successfully * - ESP_OK if creating encoder successfully
*/ */
esp_err_t rmt_new_led_strip_encoder(const led_strip_encoder_config_t *config, esp_err_t rmt_new_led_strip_encoder(const led_strip_encoder_config_t *config,

View File

@ -1,3 +1,4 @@
#include "driver/gpio.h"
#include "driver/rmt_tx.h" #include "driver/rmt_tx.h"
#include "esp_log.h" #include "esp_log.h"
#include "esp_now.h" #include "esp_now.h"
@ -13,14 +14,18 @@
#include <string.h> #include <string.h>
#define LED_STRIP_GPIO_NUM 8 #define LED_STRIP_GPIO_NUM 8
#define LED_STRIP_LED_NUMBERS 4 #define LED_STRIP_LED_NUMBERS 8
#define LED_STRIP_RMT_RES_HZ \ #define LED_STRIP_RMT_RES_HZ \
(10 * 1000 * 1000) // 10MHz resolution, 1 tick = 0.1us (10 * 1000 * 1000) // 10MHz resolution, 1 tick = 0.1us
#define BUTTON_GPIO_NUM 7
#define ESPNOW_WIFI_CHANNEL 6 #define ESPNOW_WIFI_CHANNEL 6
static const char *TAG = "DinnerRecv"; static const char *TAG = "DinnerRecv";
static const uint8_t dinner_send_mac[6] = {0x08, 0x3A, 0xF2, 0x3E, 0x6D, 0x34};
// Global variables // Global variables
static bool dinner_alert = false; static bool dinner_alert = false;
static uint64_t dinner_start_time = 0; static uint64_t dinner_start_time = 0;
@ -28,6 +33,8 @@ static uint64_t last_blink_time = 0;
static bool led_state = false; static bool led_state = false;
static uint8_t breath = 0; static uint8_t breath = 0;
static uint64_t last_breath_time = 0; static uint64_t last_breath_time = 0;
static bool button_pressed = false;
static uint64_t last_button_time = 0;
// RMT and LED strip handles // RMT and LED strip handles
static rmt_channel_handle_t led_chan = NULL; static rmt_channel_handle_t led_chan = NULL;
@ -86,13 +93,13 @@ static void on_data_received(const esp_now_recv_info_t *mac_addr,
} }
static void blink_all_leds(void) { static void blink_all_leds(void) {
if (get_time_ms() - last_blink_time >= 2000) { if (get_time_ms() - last_blink_time >= 500) {
last_blink_time = get_time_ms(); last_blink_time = get_time_ms();
led_state = !led_state; led_state = !led_state;
if (led_state) { if (led_state) {
for (int i = 0; i < LED_STRIP_LED_NUMBERS; i++) { for (int i = 0; i < LED_STRIP_LED_NUMBERS; i++) {
led_strip_set_pixel(i, 255, 0, 0); led_strip_set_pixel(i, 0, 0, 255); // G R B
} }
} else { } else {
led_strip_clear(); led_strip_clear();
@ -104,13 +111,13 @@ static void blink_all_leds(void) {
static void breathe(void) { static void breathe(void) {
uint8_t val = breath > 128 ? 256 - breath : breath; uint8_t val = breath > 128 ? 256 - breath : breath;
for (int i = 0; i < LED_STRIP_LED_NUMBERS; i++) { for (int i = 0; i < LED_STRIP_LED_NUMBERS; i++) {
led_strip_set_pixel(i, 0, 0, val); led_strip_set_pixel(i, val, val, val);
} }
led_strip_show(); led_strip_show();
} }
static void dinner_animation(void) { static void dinner_animation(void) {
if (get_time_ms() - dinner_start_time > 15 * 1000) { if (get_time_ms() - dinner_start_time > 20 * 1000) {
dinner_alert = false; dinner_alert = false;
ESP_LOGI(TAG, "Dinner alert timeout - returning to normal mode"); ESP_LOGI(TAG, "Dinner alert timeout - returning to normal mode");
led_strip_clear(); led_strip_clear();
@ -151,6 +158,19 @@ static esp_err_t init_wifi(void) {
return ESP_OK; return ESP_OK;
} }
static esp_err_t send_dinner_ack(void) {
const char *message = "dinner-ack";
esp_err_t ret =
esp_now_send(dinner_send_mac, (const uint8_t *)message, strlen(message));
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Failed to send dinner-ack: %s", esp_err_to_name(ret));
return ret;
}
ESP_LOGI(TAG, "Sent dinner-ack message");
return ESP_OK;
}
static esp_err_t init_espnow(void) { static esp_err_t init_espnow(void) {
esp_err_t ret = esp_now_init(); esp_err_t ret = esp_now_init();
if (ret != ESP_OK) { if (ret != ESP_OK) {
@ -161,6 +181,19 @@ static esp_err_t init_espnow(void) {
ESP_ERROR_CHECK(esp_now_register_recv_cb(on_data_received)); ESP_ERROR_CHECK(esp_now_register_recv_cb(on_data_received));
ESP_LOGI(TAG, "ESP-NOW initialized and ready to receive messages"); ESP_LOGI(TAG, "ESP-NOW initialized and ready to receive messages");
ret = esp_now_add_peer(&(esp_now_peer_info_t){
.peer_addr = {dinner_send_mac[0], dinner_send_mac[1], dinner_send_mac[2],
dinner_send_mac[3], dinner_send_mac[4], dinner_send_mac[5]},
.channel = ESPNOW_WIFI_CHANNEL,
.encrypt = false,
});
if (ret != ESP_OK && ret != ESP_ERR_ESPNOW_EXIST) {
ESP_LOGE(TAG, "Failed to add peer: %s", esp_err_to_name(ret));
return ret;
}
ESP_LOGI(TAG, "ESP-NOW sender registered");
return ESP_OK; return ESP_OK;
} }
@ -191,16 +224,47 @@ static esp_err_t init_led_strip(void) {
return ESP_OK; return ESP_OK;
} }
static esp_err_t init_button(void) {
gpio_config_t io_conf = {
.pin_bit_mask = (1ULL << BUTTON_GPIO_NUM),
.mode = GPIO_MODE_INPUT,
.pull_up_en = GPIO_PULLUP_ENABLE,
.pull_down_en = GPIO_PULLDOWN_DISABLE,
.intr_type = GPIO_INTR_DISABLE,
};
ESP_ERROR_CHECK(gpio_config(&io_conf));
ESP_LOGI(TAG, "Button initialized on GPIO %d", BUTTON_GPIO_NUM);
return ESP_OK;
}
static void check_button(void) {
int button_level = gpio_get_level(BUTTON_GPIO_NUM);
uint64_t current_time = get_time_ms();
if (button_level == 0 && !button_pressed &&
(current_time - last_button_time > 200)) {
button_pressed = true;
last_button_time = current_time;
ESP_LOGI(TAG, "Button pressed!");
if (dinner_alert) {
dinner_alert = false;
ESP_LOGI(TAG, "Dinner alert dismissed by button press");
led_strip_clear();
led_strip_show();
send_dinner_ack();
}
} else if (button_level == 1) {
button_pressed = false;
}
}
void app_main(void) { void app_main(void) {
ESP_LOGI(TAG, "Dinner RECV"); ESP_LOGI(TAG, "Dinner RECV");
// Initialize LED strip
ESP_ERROR_CHECK(init_led_strip()); ESP_ERROR_CHECK(init_led_strip());
ESP_ERROR_CHECK(init_button());
// Initialize WiFi
ESP_ERROR_CHECK(init_wifi()); ESP_ERROR_CHECK(init_wifi());
// Initialize ESP-NOW
ESP_ERROR_CHECK(init_espnow()); ESP_ERROR_CHECK(init_espnow());
// Print WiFi parameters // Print WiFi parameters
@ -214,11 +278,14 @@ void app_main(void) {
// Main loop // Main loop
while (1) { while (1) {
check_button();
if (dinner_alert) { if (dinner_alert) {
dinner_animation(); dinner_animation();
} else { } else {
breath_animation(); breath_animation();
} }
vTaskDelay(pdMS_TO_TICKS(10)); // Small delay to prevent watchdog timeout
vTaskDelay(pdMS_TO_TICKS(10)); // prevent watchdog timeout
} }
} }

View File

@ -22,8 +22,10 @@ unsigned long lastDebounceTime = 0;
unsigned long debounceDelay = 50; unsigned long debounceDelay = 50;
// Broadcast MAC address for ESP-NOW // Broadcast MAC address for ESP-NOW
uint8_t recvMAC[] = {0x08, 0x3A, 0xF2, 0x39, 0x0A, 0xA8}; //uint8_t recvMAC[] = {0x08, 0x3A, 0xF2, 0x39, 0x0A, 0xA8};
// 08:3A:F2:39:0A:A8 uint8_t recvMAC[] = {0x7c, 0xdf, 0xa1, 0xb4, 0x48, 0x14};
// 7c:df:a1:b4:48:14 - esp32-c3-32s
// 08:3A:F2:39:0A:A8 - other firebeetle
#define DELAYVAL 250 #define DELAYVAL 250

69
esp32-c3-32s.txt Normal file
View File

@ -0,0 +1,69 @@
this was retrieved from `idf.py monitor` from the esp-idf hello-world example using all esp-idf toolchain as described in
https://www.embeddedrelated.com/showarticle/1434.php#ESP-IDF_Installation
ESP-ROM:esp32c3-api1-20210207
Build:Feb 7 2021
rst:0xc (RTC_SW_CPU_RST),boot:0xc (SPI_FAST_FLASH_BOOT)
Saved PC:0x40382ffc
--- 0x40382ffc: esp_restart_noos at /home/alx/esp/esp-idf/components/esp_system/port/soc/esp32c3/system_internal.c:116
SPIWP:0xee
mode:DIO, clock div:1
load:0x3fcd5820,len:0x15c4
load:0x403cbf10,len:0xc64
--- 0x403cbf10: esp_bootloader_get_description at /home/alx/esp/esp-idf/components/esp_bootloader_format/esp_bootloader_desc.c:40
load:0x403ce710,len:0x2fcc
--- 0x403ce710: esp_flash_encryption_enabled at /home/alx/esp/esp-idf/components/bootloader_support/src/flash_encrypt.c:89
entry 0x403cbf1a
--- 0x403cbf1a: call_start_cpu0 at /home/alx/esp/esp-idf/components/bootloader/subproject/main/bootloader_start.c:25
I (35) boot: ESP-IDF v6.0-dev-2039-g2044fba6e7 2nd stage bootloader
I (35) boot: compile time Sep 15 2025 11:08:39
I (35) boot: chip revision: v0.3
I (37) boot: efuse block revision: v1.1
I (40) boot.esp32c3: SPI Speed : 80MHz
I (44) boot.esp32c3: SPI Mode : DIO
I (48) boot.esp32c3: SPI Flash Size : 2MB
I (52) boot: Enabling RNG early entropy source...
I (56) boot: Partition Table:
I (59) boot: ## Label Usage Type ST Offset Length
I (65) boot: 0 nvs WiFi data 01 02 00009000 00006000
I (72) boot: 1 phy_init RF data 01 01 0000f000 00001000
I (78) boot: 2 factory factory app 00 00 00010000 00100000
I (85) boot: End of partition table
I (88) esp_image: segment 0: paddr=00010020 vaddr=3c020020 size=0638ch ( 25484) map
I (100) esp_image: segment 1: paddr=000163b4 vaddr=3fc89c00 size=013a8h ( 5032) load
I (104) esp_image: segment 2: paddr=00017764 vaddr=40380000 size=088b4h ( 34996) load
I (117) esp_image: segment 3: paddr=00020020 vaddr=42000020 size=10308h ( 66312) map
I (128) esp_image: segment 4: paddr=00030330 vaddr=403888b4 size=012d4h ( 4820) load
I (130) esp_image: segment 5: paddr=0003160c vaddr=50000000 size=00020h ( 32) load
I (136) boot: Loaded app from partition at offset 0x10000
I (138) boot: Disabling RNG early entropy source...
I (154) cpu_start: Unicore app
I (162) cpu_start: GPIO 20 and 21 are used as console UART I/O pins
I (163) cpu_start: Pro cpu start user code
I (163) cpu_start: cpu freq: 160000000 Hz
I (165) app_init: Application information:
I (168) app_init: Project name: hello_world
I (173) app_init: App version: 1
I (176) app_init: Compile time: Sep 15 2025 11:08:37
I (181) app_init: ELF file SHA256: a67f59997...
I (185) app_init: ESP-IDF: v6.0-dev-2039-g2044fba6e7
I (191) efuse_init: Min chip rev: v0.3
I (195) efuse_init: Max chip rev: v1.99
I (199) efuse_init: Chip rev: v0.3
I (203) heap_init: Initializing. RAM available for dynamic allocation:
I (209) heap_init: At 3FC8BDE0 len 00034220 (208 KiB): RAM
I (214) heap_init: At 3FCC0000 len 0001C710 (113 KiB): Retention RAM
I (220) heap_init: At 3FCDC710 len 00002950 (10 KiB): Retention RAM
I (226) heap_init: At 50000020 len 00001FC8 (7 KiB): RTCRAM
I (232) spi_flash: detected chip: generic
I (235) spi_flash: flash io: dio
I (238) sleep_gpio: Configure to isolate all GPIO pins in sleep state
I (244) sleep_gpio: Enable automatic switching of GPIO sleep configuration
I (251) main_task: Started on CPU0
I (251) main_task: Calling app_main()
Hello world!
This is esp32c3 chip with 1 CPU core(s), WiFi/BLE, silicon revision v0.3, 2MB external flash
Minimum free heap size: 339008 bytes